معادله دیفرانسیل لانژون (Langevin Differential Equation)، در ریاضیات (Mathematics)
انواع معادلات دیفرانسیل (Differential Equation) را در آموزش زیر شرح دادیم :
معادله دیفرانسیل لانژون (Langevin Differential Equation) :
این یک معادله دیفرانسیل تصادفی (Stochastic Differential Equation - SDE) است که حرکت براونی (Brownian Motion) یک ذره را تحت تأثیر نیروی اصطکاک و یک نیروی تصادفی (نویز) توصیف می کند. شکل آن به صورت زیر است:
\[ m \frac{d^2 x}{dt^2} = -\gamma \frac{dx}{dt} + \xi(t) \]که در آن
\[ m \]جرم ذره،
\[ \gamma \]ضریب اصطکاک، و
\[ \xi(t) \]نویز سفید گاوسی (Gaussian White Noise) است. این معادله پایه و اساس دینامیک مولکولی، فیزیک آماری، و علم مواد است و ارتباط بین دینامیک میکروسکوپی و پدیده های ماکروسکوپی (مانند نفوذ) را برقرار می کند.