بردارهای هم خط پایه (Basis Collinear Vectors)، در ریاضیات (Mathematics)
انواع بردارهای هم خط (Collinear Vectors) را در آموزش زیر شرح دادیم :
بردارهای هم خط پایه (Basis Collinear Vectors) :
در یک فضای برداری، بردارهای پایه (Basis Vectors) معمولا غیرهم خط هستند تا بتوانند کل فضا را تولید کنند. اما گاهی مجموعه ای از بردارهای هم خط می توانند یک زیرفضای یک بعدی را تشکیل دهند.
بردارهای هم خط پایه، بردارهایی هستند که به عنوان پایه برای یک خط راست در نظر گرفته می شوند. هر بردار دیگر روی آن خط، ترکیب خطی از این بردار پایه است.
اگر e یک بردار پایه برای یک خط راست باشد، آنگاه هر بردار دلخواه v روی آن خط به صورت زیر نوشته می شود:
\[ \vec{v} = t\vec{e} \]که در آن t یک عدد حقیقی است.
برای مثال، در فضای R²، مجموعه { (1,0) } یک پایه برای محور x است. همه نقاط روی محور x به صورت (t, 0) = t(1, 0) نوشته می شوند.
این مفهوم در جبر خطی و برای تعریف زیرفضاهای برداری بسیار مهم است.