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This paper considers structural reliability assessment when statistical parameters of distribution func-
tions can not be determined precisely due to epistemic uncertainty. Uncertainties in parameter estimates
are modeled by interval bounds constructed from confidence intervals. Reliability analysis needs to con-
sider families of distributions whose parameters are within the intervals. Consequently, the probability of
failure will vary in an interval itself. To estimate the interval failure probability, an interval Monte Carlo
method has been developed which combines simulation process with the interval analysis. In this
method, epistemic uncertainty and aleatory uncertainty are propagated separately through finite ele-
ment-based reliability analysis. Interval finite element method is utilized to model the ranges of struc-
tural responses accurately. Examples are presented to compare the interval estimates of limit state
probability obtained from the proposed method and the Bayesian approach.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A major step in structural reliability analysis is the modeling
and quantification of various sources of uncertainty. It is common
in engineering practice to distinguish between aleatory uncer-
tainty and epistemic uncertainty [1,2]. Aleatory uncertainty is
due to the inherent random nature of physical quantities (e.g., vari-
abilities in yield strength of steel). Aleatory uncertainties are gen-
erally modeled by random variables. In contrast to aleatory
uncertainty, epistemic uncertainty is knowledge-based, and arises
from imperfect modeling, simplification and limited availability of
database. Possible sources of epistemic uncertainty include model
uncertainty and statistical uncertainty. Model uncertainty is re-
lated to the discrepancy between real structural behavior and its
simplified representation in mathematical models such as finite
element (FE) models. Statistical uncertainty is another important
source of epistemic uncertainty. The probability distribution to de-
scribe a random phenomenon is generally not precisely known.
The statistical parameters (e.g., mean and standard deviation) are
usually estimated by statistical inference from sampled observa-
tional data and a point estimator is used to approximate the ‘true’
parameter. Thus the distribution is itself subject to some uncer-
tainty. Statistical uncertainty may be significant if only a limited
sample of data is available. While the model uncertainty is beyond
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the scope of this work, the statistical uncertainty will be consid-
ered here. In particular, we are interested in reliability assessment
when the parameters of distribution functions can not be deter-
mined precisely due to small sample size.

The Bayesian approach is routinely used to consider the uncer-
tainties associated with estimation of parameters of a probability
distribution. The unknown parameters are assumed to be (Bayes-
ian) random variables [3]. The epistemic uncertainty and aleatory
uncertainty are combined through the total probability theorem.
With the Bayesian approach, subjective judgments are required
to estimate the Bayesian random variables. The estimate of the
Bayesian random variables can be improved when additional data
become available. Before receiving more data, however, the Bayes-
ian approach remains a subjective representation of uncertainty.

In this paper, incomplete knowledge of the distribution param-
eters is modeled by the interval bounds constructed from confi-
dence intervals. Based on the observational data, a confidence
interval is established over which the parameter is located at a
specified level of confidence [3]. The epistemic uncertainties in
estimating the parameters are reflected in the widths of the inter-
vals. With the interval approach, reliability assessment needs to
consider families of distributions whose parameters are within
the intervals. One practical way to describe the ensemble of distri-

butions is to specify its lower and upper bounds. (I iEHNEEICIEHED)

The computation procedures are typically a combination of inter-
val analysis and the Cartesian product method [7]. Lower and
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upper bounds on the limit state probability are computed. Pen-
metsa and Grandhi [8] considered random variables and interval
variables simultaneously in structural reliability analysis. Function
approximation was used to reduce the number of simulations. In
[6,9], probability boxes and Dempster-Shafer structures were used
to bound imprecisely specified probability distributions. The meth-
od was applied to environmental risk assessment. Tonon et al. [10]
considered the reliability analysis for an aircraft wing at the early
stage of design process where the observational data is not
point-valued but set-valued. Random set theory was employed to
represent the envelope of all probability distributions compatible
with the available information. In [11], random sets were con-
structed from limited observational data by applying inequalities
of Tchebycheff to the sample mean. The method was utilized to
bound the statistics of the displacement response of a cantilever
sheet pile wall. In [12], interval analysis was combined with
first-order reliability method (FORM). The unknown means and
standard deviations of random variables were modeled as interval

numbers. Interval analysis was applied to the closed-form solu-
tions of FORM, and the bounds on structural system reliability in-
dex were evaluated.

Despite the research progress, the computing effort, especially
when Cartesian product method is used, is a barrier to the practical
application of non-traditional uncertainty models. The issue of
computational cost becomes more serious when the reliability
analysis is FE-based, i.e., the structural responses are obtained
through FE analyses.

This paper proposes an interval Monte Carlo method to propa-
gate interval parameters through FE-based reliability assessment.
The FE portion of the analysis is carried out by the authors’ recently
developed interval finite element method (FEM). An interval esti-
mate on the failure probability is computed. Two plane structures
are analyzed to illustrate the proposed method. The interval failure
probabilities obtained from the proposed method and the Bayesian
approach are compared through the examples.

2. Reliability analysis under parameter uncertainty

The basic reliability problem is defined by the multiple
integration

p; = P(G(X) < 0) = / /G g OO (1)

Here p; represents the probability of failure of the structure.
X=(Xy,... ,Xn)T is the n-dimensional vector of the basic random
variables representing uncertain quantities such as applied loads,
material strength and stiffness. fx(X) is the joint probability density
function for X. G(X) is the limit state function and G(X) < 0 defines
the failure state.

Let 0 denote the (unknown) statistical parameters of the distri-
bution function fx(x). In the Bayesian approach 0 are modeled to be
random variables, thus fx(x) becomes a conditional distribution
function fx(x|0). Clearly the presence of ¢ implies that the proba-
bility py is random itself. The expectation of the conditional failure
probability is often computed to characterize the total uncertainty
[1,13]

b= [monoao= [ [ s 2)

where f;(0) is the joint probability distribution function of the
parameters 0. However, there is a perception that the mean (or
other point estimate) of p; does not fully characterize the epistemic
uncertainty in the failure probability [14,15]. Alternatively, episte-
mic and aleatory uncertainties can be propagated through reliabil-
ity analysis separately to obtain an interval estimate of p;. Within

the framework of the Bayesian approach, one can compute the fre-
quency distribution of p;, based on which a Bayesian confidence
interval on p; can be estimated. Interval estimate of failure proba-
bility can provide useful information to decision-makers about
the variability in reliability or risk [14]. When applying the Bayesian
approach, subjective judgment is needed to estimate f;(0). The esti-
mate of f,(0) can be improved by using the Bayesian updating rule
when more data become available. Before receiving additional data,
however, the Bayesian approach remains a subjective representa-
tion of epistemic uncertainty.

2.1. Interval approach

This paper adopts the confidence interval approach to represent
the unknown parameters 0. Let @ denote the confidence intervals,
and 0 is a generic (arbitrary) element 6 € ©. Under this assumption
one needs to consider families of distributions whose parameters
are in the intervals. Conceivably, the probability of failure p; will
not be unique and vary in an interval. We are interested in estimat-
ing a lower bound and an upper bound of py.

A visualization of all possible distributions with 0 € ® can be
obtained by means of upper and lower distribution functions. Let
F(x) denote the cumulative distribution function (CDF) for the ran-
dom variable X. For every x, an interval [F(x), F(x)] generally can be
readily found to bound the possible values of F(x), i.e.,
F(x) < F(x) < F(x), for 0 ¢ O.

Fig. 1 shows the probability box for a normal distribution with
an interval mean of [2.0, 3.0] and a standard deviation of 0.5. In this
simple example, it is easy to verify that F(x) is the CDF of the nor-
mal variable with a mean of 3 and F(x) is the one with a mean of 2.
Probability box represents a general framework to represent
imprecisely specified distributions. It can represent not only distri-
butions with unknown parameters, but also distributions with un-
known type or even unknown dependencies [6].

Cartesian product method is routinely used for computing with
probability boxes [6,7]. In this method, a probability box is discret-
ized into a list of pairs {(A1,m),..., (Ai,m;),...}, in which A; are
intervals and m; are their associated probability masses. A; can be
termed as focal elements and m; can be viewed as the probability
that A; is the range of x [17]. Thus a probability box is analogous
to a discrete probability distribution except that the probability
mass is assigned to an interval rather than to a precise point. Dif-
ferent discretization methods have been proposed, such as the
Outer Discretization Method and the Averaging Discretization
Method [16]. The two discretization methods are graphically dem-
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Fig. 1. A probability box defined by a normal distribution with a mean of [2.0,3.0]
and a standard deviation of 0.5.
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onstrated in Fig. 2a and b. In practice, unbounded distributions are
truncated to a finite range. Clearly, the accuracy of the approxima-
tion depends on how fine the discretization is [7].

Consider the limit state function G(X) in Eq. (1). Suppose that
the basic variables X = (Xi,...,X,)" are represented by n probabil-
ity boxes. If the basic variables are statistically independent, the
random relation pertaining to (X, ..., X,) can be defined by a prob-
ability box {(R1, p;), ..., (R, p))} on the Cartesian product of the fo-
cal elements of X; x --- x X, [17,18]. The lower and upper bound
on the probability of G(X) < 0 can be evaluated as [4]

(3)
(4)

pr= Pi
R:0>inf(G(R;)

br= Pi

Ri:0=>sup(G(R;))

in which inf( ) and sup( ) denote infimum and supremum of the
function, respectively. pf and p; represent an upper and lower
bound for p; respectively. ;

The above computation procedure requires that the image of
every focal element R; through the limit state function G( ) be cal-
culated. If each probability box X; has k focal elements, the total
number of focal elements from the Cartesian products
X1 x -+ x X, is k". For realistic engineering problems with large
number of n and/or k, the computing effort of performing k" struc-
tural analyses is prohibitive. Williamson [7] introduced a conden-
sation strategy of constructing coarser discretization for
probability boxes to reduce the calculation number to (n — 1)k2.
However, there is a trade off between computational cost and

accuracy of results. (ISHOUCICOMENINCHGIINCHIE/NESSOGIRCEMIE
3. Interval Monte Carlo simulation
3.1. Basic formula

In Monte Carlo simulation, the probability of failure is approxi-
mated as [1]

1 ¢ .
~N > IG(X) <0
j=1

where N is the total number of simulations conducted, X; represents
the jth randomly simulated vector of basic variables, and I[ | is the
indicator function, having the value 1 if [ ] is ‘true’ and the value O if
[ ]is ‘false’.
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The basic Monte Carlo simulation formula can be extended to
the case when fx(x) is a probability box with 6 € ©. When 0 varies
in intervals, the randomly simulated basic variables X; vary in
intervals accordingly. The limit state function G(X;) becomes a
function of 0 as well, i.e.,, G(X;, 0). If the minimum and the maxi-
mum values of G(X;, 0) can be determined

Min(G(x;, 0)) < G(X;,0) < Max(G(x;,0)), for0ec © (6)
then
I[Max(G(%;. 0)) < 0] < I[G(%;,0) < 0] < [Min(G(%;,0)) <0 (7)
Applying Eq. (7) in (5) gives
1 N N
0D IMax(G(x, 0) < 0] < y; > IIG(.0)
j=1 j=1
N
<{ Z;I[Mm (%;,0)) < 0]. (8)
Thus, Eq. (8) provides an interval estimate for p;
1 .
by~ 2 1IMax(G(x;,0)) < 0],
Jj=1
o 9)
bRy ;I[Mm(c(xj,é))) <0], foroeco.

3.2. Computational aspects

The first step in the implementation of interval Monte Carlo
simulation is the generation of intervals in accordance with the
prescribed probability boxes. The inverse transform method [3] is
often used to generate random numbers. Consider a random vari-
able X with CDF F(x). If (uq,uz,...,uy) is a set of values from the
standard uniform variate, then the set of values

xi=Fluw);i=1,2,....m (10

will have the desired CDF F(x). The inverse transform method can
be extended to perform random sampling from a probability box.
Suppose that an imprecise CDF F(x) is bounded by F(x) and F(x),
as shown in Fig. 3. For each u; in Eq. (10), two random numbers
are generated

xi=F'(w), X =F"'

(). (11)

Such a pair of x; and x; form an interval [x;, X;] which contains all pos-
sible simulated numbers from the ensemble of distributions for a
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Fig. 2. Discretization of a probability box. (a) Outer Discretization Method; (b) Averaging Discretization Method [16].
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Fx(x)
Fx(x)

Fy(x)

u;

X, X X

i i

Fig. 3. Generation of random number from distribution with interval parameters.

particular u;. The method is graphically demonstrated in Fig. 3 for
one-dimensional case.

3.3. Computing the ranges of structure responses — interval FEM

The computational effort of the interval Monte Carlo simulation
is contingent on the efficiency of computing the range (max. and
min.) of structural responses through FE analyses when the simu-
lated basic variables vary in intervals. This task can be performed
by using the interval FEM. A variety of solution techniques have
been proposed for the interval FEM, including the combinatorial
method [19,20], perturbation method [21,22], sensitivity analysis
method [23], optimization method [24,25], and interval analysis
method [26-28]. In this paper, the interval FE analysis is formu-
lated as an interval analysis problem. The interval analysis and
interval FE formulation is briefly introduced below. Further details
are provided in the authors’ previous work [29-31].

Interval analysis concerns the numerical computations involv-
ing interval numbers. The four elementary operations of real arith-
metic, namely addition (+), subtraction (—), multiplication (x) and
division (+) can be extended to intervals. Operations
o € {+,—, x,=+} over interval numbers x and y are defined by the
general rule [32,33]

Xoy=[min(xoy), max(xoy)] foroe {+,—, x,+} (12)

in which x and y denote generic elements x € X and y € y. Software
and hardware support for interval computation are available (e.g.,
[34,35]).

For a real-valued function f(xs,...,X,), the interval extension of
f() is obtained by replacing each real variable x; by an interval var-
iable x; and each real operation by its corresponding interval arith-
metic operation. From the fundamental property of inclusion
isotonicity [32], the range of the function f(xy,...,x,) can be rigor-
ously bounded by its interval extension function

{fx, ...

Eq. (13) indicates that f(x;,...,%,) contains the range of f(x1,...,X,)
for all x; € x;.

A natural idea to implement interval FEM is to apply the inter-
val extension to the deterministic FE formulation. Unfortunately,
such a naive use of interval analysis in FEM yields meaningless
and overly wide results [27,28]. The reason is that in interval arith-
metic each occurrence of an interval variable is treated as a differ-
ent, independent variable. It is critical to the formulation of the
interval FEM to identify the dependence between the interval vari-
ables and prevent the widening of results. In this paper, an ele-
ment-by-element (EBE) technique is utilized for element
assembly [27,30]. The elements are detached so that there are no

sXn) | X1 € Xe,. . Xn € X} CF(Re, ..., Xn). (13)

connections between elements, avoiding element coupling. The
penalty method is then employed to impose constraints to recover
the connections between elements, and to ensure the compatibility
of the displacements. The system equation in the interval FEM
takes the following form

K+Qu=p (14)

where K is the interval stiffness matrix, u is the interval displace-
ment vector, p is the interval load vector, and Q is the deterministic
penalty matrix. Eq. (14) can be transformed into a fixed point
equation

Rp—R(K +Q)ug + (I —RIK +Q))u" =u* (15)

in which R is a nonsingular preconditioning matrix, and uy is an
approximate deterministic solution. It can be verified that
u = u" + up. Based on Eq. (15), interval fixed point iteration is con-
structed [33,36]

Z+ o —uth (16)

with Z = Rp — R(K + Q)uo, and the iterative matrix C = [-R(K + Q).
The iteration converges when

u*(l+1) (;u*“). (17)

Then u*™Y + u, guarantees to contain the exact solution set of Eq.
(14). The original interval fixed point iteration implicitly assumes
that the coefficients of K vary independently between their bounds.
This assumption is not valid for the system equations that arise in
the interval FEM. Special formulation has to be developed to remove
coefficient-dependence in the algorithm. By using the EBE tech-
nique, it is possible to decompose the interval stiffness matrix K
into two parts

K=5D (18)

in which S is a deterministic matrix and D is an interval diagonal
matrix whose diagonal entries are the interval variables associated
with each element (e.g., interval modulus of elasticity). The term Z
in Eq. (16) can then be reintroduced as

Z =Rp — R(K + Q)up = Rp — RQuy — RSDuq
= Rp — RQuy — RSMé. (19)

It must be noted that in Eq. (19) Duy is introduced as Mé in which M
is a deterministic matrix and § is an interval vector [26]. The com-
ponents of & are the diagonal entries of D with the difference that
every interval variable occurs only once in é. This treatment elimi-
nates the coefficient-dependence in Z, which is critical for obtaining
a tight bound.

The interval fixed point iteration converges if and only if
p(I€)) < 1 [37], where p(|C|) is the spectral radius of the absolute
value of the iterative matrix C. To achieve a small p(|C|), the choice
R=(Q+S)" is made such that

C=I-RQ+SD)=I-R(Q+S)—RS(D—I)=—RS(D—1). (20)

Numerical tests have shown that fast convergence (within 10 iter-
ations) generally can be achieved by using the above modified iter-
ative algorithm. The developed linear elastic interval FEM has been
successfully applied to plane frame structures, as well as continuum
mechanics problems [29-31]. The structural responses can be accu-
rately and efficiently computed.

Fig. 4 shows a planar truss. The serviceability limit state of

deflection is considered. (HEISHSEHORMSATENNESHNS
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Fig. 4. Truss structure.

Table 1
Sample statistics for the basic random variables (truss in Fig. 4).
Variables Sample mean  Sample standard deviation  No. samples
A; — Ag (cm?) 10.32 0.516 30
A7 — Aqs (cm?) 6.45 0.323 30
Ln Py 4483 0.09975 20
Ln P, 5.582 0.09975 20
Ln P5 4.483 0.09975 20
Unit of P: kN.

The cross-sectional areas for the 15 members and the three
loads are identified as the basic random variables. All the 18 ran-
dom variables are assumed to be mutually statistically indepen-
dent. Assume that based on experience, the cross-sectional areas
can be modeled by normals, and the loads modeled by lognormals.
Suppose the statistics for the random variables were estimated
from limited samples of data. Table 1 gives the available sample
statistics for the cross-sectional areas and the logarithm of the
loads (Ln P). The Young’s modulus is assumed deterministic
(200 GPa). The limit state probability is found to be 0.14% if the
sample statistics are used. We now take into account the effects
of parameter uncertainty on reliability assessment. Two cases are
considered: (1) the uncertain means for the cross-sectional areas,
and (2) the uncertain means for the (logarithm of) loads. The inter-
val Monte Carlo method and the Bayesian approach are used to ob-
tain interval estimates for the failure probability. The results from
the two approaches are compared.

4.1. Case 1

4.1.1. Bayesian approach
Assume that the standard deviations of the cross-sectional areas
are equal to those obtained from the samples. Let N(u, o) denote a

187
Table 2
Bayesian confidence intervals for py, Case 1 (truss in Fig. 4).
Confidence 90% 95% 99%
pr [0.08%, 0.20%] [0.063%, 0.22%] [0.014%, 0.27%]

normal distribution with a mean of g and a standard deviation of
0. Assuming a uniform prior, for samples of size 30 the mean
cross-sectional area of A; —As and A; —A;s are modeled by
N(10.32,0.516/v/30) and N(6.45,0.323/v/30) respectively [3].
Sample statistics for the loads are used in this case.

The distribution of p; was numerically determined through a
double-loop simulation procedure. In the outer loop, the means
of cross-sectional areas were sampled. With the simulated mean
values, the system failure probability was computed in the inner
loop. 10,000 simulations were made for the mean cross-sectional
areas. The relative frequency distribution of p; is shown in Fig. 5
with a mean of 0.14% and a COV (coefficient of variation) of 0.3.
It can be seen that the distribution of p; is skewed. A lognormal
is a good fit to the simulated data of p;,.(Based on the simulated dis-
tribution of p;, one can determine the Bayesian confidence interval
for (py (corresponding to a specified probability.) For example, one
can state the probability that p, will be in the interval from
0.08% to 0.2% is 0.9. Table 2 summarizes the intervals for p; with
different confidence. The Bayesian confidence intervals were
determined such that the central point of the interval equals to
the mean.

4.1.2. Interval approach

Table 3 summarizes the confidence intervals for the mean
cross-sectional areas at different confidence levels. The random
cross-sectional areas with interval means are bounded by probabil-
ity boxes. For each confidence level, 500,000 interval Monte Carlo
simulations were performed with randomly generated intervals
for the cross-sectional areas according to their probability bounds.
Interval FEM was utilized to find the minimum and the maximum
of the deflection at the midspan. The last row of Table 3 gives the
interval estimates of py, corresponding to the mean cross-sectional
areas at a particular confidence level. For example, if the 95% con-
fidence intervals are used to bound the mean cross-sectional areas,
the failure probability is found to be between 0.048% and 0.30%. As
expected, the width of the interval estimate for p; becomes wider
when a higher confidence level is used for the unknown
parameters.

The computational efficiency of the proposed interval Monte
Carlo simulation is evident in this example when compared with

0.04 -
0.035 mean = 0.0014
IS COvV=03
0.03 MmN
> -
g I HE
S 0.025 | T
) m
g ™
£ 002 1
o
=
S 0.015 |
©
® .01
0.005
0- -
0.0004 0.0010 0.0016 0.0022 0.0028 0.0034

Probability of failure

Fig. 5. Relative frequency distribution for p; obtained from the Bayesian approach, Case 1 (truss in Fig. 4).
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Table 3
Interval estimates for p; obtained from interval Monte Carlo simulations, Case 1 (truss
in Fig. 4).

Table 4
Interval estimates for p; obtained from the interval Monte Carlo simulations, Case 2
(truss in Fig. 4).

Variables Confidence level for the mean cross-sectional area Variables Confidence level for 4;

90% 95% 99% 90% 95% 99%
A1 — Ag (cm?) [10.17, 10.48] [10.14, 10.51] [10.08, 10.56] M, 73 [4.4465, 4.5199] [4.4395, 4.5269] [4.4258, 4.5407]
A7 — Ay5 (cm?) [6.35, 6.55] [6.34, 6.57] [6.30, 6.60] Ja [5.5452, 5.6186] [5.5381, 5.6256] [5.5244, 5.6393]
Py [0.062%, 0.26%] [0.048%, 0.30%] [0.031%, 0.43%] pr [0.025%, 0.67%] [0.019%, 0.72%] [0.01%, 1.18%]

the Cartesian product method. The Cartesian product method
would require 10'® analyses if each of the 15 probability boxes is
discretized into 10 focal elements. Such a computing effort makes
the Cartesian product method impractical in this example.

4.2.1. Bayesian approach
The natural logarithm of loads (Ln P;,i = 1,2, 3) are normal dis-

tributions. Assume that the standard deviations for Ln P; are equal
(GNEFSAMpIESEARUATAMBVIAHONS Lot /. denote the mean of Ln P;.

According to the Bayesian approach, with uniform priors the pos-
terior distributions of ; and J; are N(4.483,0.09975/+/20), and
/2 is N(5.582,0.09975/+/20)./10,000 samples were drawn for each
Ji. The system failure probability associated with the sampled Z;
was computed and the frequency distribution for p; is shown in
Fig. 6. It is evident that the frequency distribution is broad and
skewed to the right with a long upper tail. The mean value of p;
is 0.17% with a very high COV of 0.76./The long upper tail and high
COV of p; suggests that the parameters /; have a significant effect
on the failure reliability. The results shown in Fig. 6 also suggest
that the system failure probability is between 0.017% and 0.34%
with 90% confidence.

4.2.2. Interval approach

Table 4 presents the confidence intervals on /; and the corre-
sponding interval estimates on the failure probability. 500,000
interval Monte Carlo simulations were performed. (COMparingiias
bles 3 and 4 shows that the widths of the interval failure probabil-
This suggests
that the failure probability is more sensitive to the errors in 4; than
the mean cross-sectional areas. As evidenced in Table 4, the inter-
val failure probability only becomes slightly wider when the confi-
dence level for J; increases from 90% to 95%. On the other hand, the

interval p; changes from [0.019%, 0.72%] to [0.01%, 1.18%] when the
confidence level for 4; increases from 95% to 99%. The high upper
bound of the interval p; corresponds to the long upper tail of the
distribution of p; obtained in the Bayesian approach.

In this example the Bayesian approach and the interval ap-
proach both imply that the mean values of (logarithm of) loads
and member cross-sectional areas have significant effects on the
structural reliability. The system reliability is particularly sensitive
to the means of (logarithm of) loads. Both approaches suggest that
additional data, particularly for loads, should be collected if more
confidence in the reliability estimate is needed.

Although the Bayesian approach and the interval approach pro-
vide comparable interval estimates for the failure probability,
these two approaches are conceptually different. The results have
different meanings. (The interval estimate of p; (obtained from the
Bayesian approach has an explicit statistical implication. Compar-
ing Tables 2 and 3 indicates that the interval failure probabilities
obtained from the interval approach tend to be wider than those
of the Bayesian approach. This is mainly due to the fact that prior
information on the unknown parameters was assumed and incor-
porated in the Bayesian approach. On the other hand, the interval
approach only uses the information of the bounds on unknown
parameters, thus does not provide a statistical statement on the
resulting interval failure probability. Although some subjective
judgment is still needed in the interval approach, such as selecting
appropriate confidence levels for the unknown parameters, it gen-
erally requires less subjective information than the Bayesian ap-
proach. The authors make no judgment as to the relative validity
of the Bayesian approach and the interval approach. The purpose
here is to demonstrate the feasibility of propagating interval infor-
mation on unknown parameters through reliability assessment by
using the proposed interval Monte Carlo methods.

0.06
0.05+ i mean = 0.0017
: COV =0.76
o |
2 0.04 T
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=}
Sy L
[0}
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Fig. 6. Relative frequency histogram for p, obtained from the Bayesian approach, Case 2 (truss in Fig. 4).
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Fig. 7. Two-bay two-story frame.

The second example demonstrates the application of the devel-
oped method on frame structures. A two-bay two-story steel frame
shown in Fig. 7 is considered. The frame geometry and member
sizes are based on those of [38]. In the figure the column is denoted
as ‘C’ and the beam as ‘B’. Subscripts indicate member number. The
frame is subjected to lateral loads at each floor and vertical loads at

the top. The loads are assumed deterministic. THe'Young s'modults

(ariabIes) Suppose only interval bound information is available
for the means of the random variables. Table 5 summarizes the
interval means and the standard deviations for the basic random
variables. All random variables are assumed normals. For simplic-
ity, it is assumed that the moment of inertia and cross-sectional
area are statistically independent. Perfectly correlation is assumed

Table 5
Random sectional properties for the frame of Fig. 7.
Member g (cm?) or (cm*)  p, (cm?) o, (cm?)
Ci [5327.2, 5494.9] 270.55 [35.4,36.5] 1.80
C, [62696.6, 64670.2] 3184.2 [246.4,254.2] 12.5
@ [2204.6, 2274.0] 111.97 [22.5.23.2] 1.14
Cs, G5, Co [50813.0,52412.4] 2580.6 [203.3, 209.7] 10.32
By [116787.9, 120464.1]  5931.3 [157.5,162.5] 8.0
B, [319629.9, 329691.1] 16233.0 [252.2,260.1] 12.81
Bs [25078.7, 25868.1] 1273.7 [75.0,77.3] 3.81
B4 [133998.7, 138216.6]  6805.4 [176.0,181.5]  8.94
u: mean; o: standard deviation.
1 -
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Fig. 8. Bounds of the cumulative frequency distribution of the roof drift (frame in
Fig. 7).

between column-to-column, and between beam-to-beam. No cor-
relation exists between column-to-beam.

The serviceability limit state considered is H/500 (21 mm) for
roof drift, where H is the total height of the frame. Linear elastic
analyses were performed. The bounds of the cumulative frequency
distribution of the roof drift were obtained after 10,000 interval
Monte Carlo simulations, and is as shown in Fig. 8. The probability
of failure is found to be between 0.11% and 1.29%.

An interval Monte Carlo method has been developed for reli-
ability assessment under parameter uncertainties represented by
confidence intervals. The interval information of unknown param-
eters and the inherent uncertainties are propagated separately
through reliability analysis. Interval FEM is utilized to model the
ranges of structural responses accurately and efficiently. Interval
estimates of failure probability are computed which can provide
a statement of confidence in the results of the reliability estimate.
A wide interval p, implies that epistemic uncertainties are large,
thus additional data should be collected. The developed method
can also be used to study the sensitivities of failure probability
with respect to the changes in distribution parameters.

A truss structure and a steel frame have been analyzed to illus-
trate the proposed method. In the truss example, the results pro-
duced by using the proposed method and the Bayesian approach
were compared. Both approaches can obtain interval estimates
on the limit state probability and provide decision-makers and
designers useful information about the variabilities in reliability

estimates. The interval p; obtained from the proposed method
This is

to be expected since the interval approach only uses the informa-
tion of the confidence bounds on the unknown parameters, while
in the Bayesian approach prior information is assumed and incor-
porated in analysis.

@B Future work can explore the possibility of extending the
interval analysis with more advanced sampling methods such as
the importance sampling to improve the computational efficiency.
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