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Abstract. The effectiveness of clustering analysis relies not only on the 
assumption of cluster number but also on the class distribution of the data 
employed. This paper represents another step in overcoming a drawback of K-
means, its lack of defense against imbalance data distribution. K-means is a 
partitional clustering technique that is well-known and widely used for its low 
computational cost. However, the performance of k-means algorithm tends to 
be affected by skewed data distributions, i.e., imbalanced data. They often 
produce clusters of relatively uniform sizes, even if input data have varied 
cluster size, which is called the “uniform effect.” In this paper, we analyze the 
causes of this effect and illustrate that it probably occurs more in the k-means 
clustering process. As the minority class decreases in size, the “uniform effect” 
becomes evident. To prevent the effect of the “uniform effect”, we revisit the 
well-known K-means algorithm and provide a general method to properly 
cluster imbalance distributed data.  

The proposed algorithm consists of a novel under random subset generation 
technique implemented by defining number of subsets depending upon the 
unique properties of the dataset.  We conduct experiments using ten UCI 
datasets from various application domains using five algorithms for comparison 
on eight evaluation metrics. Experiment results show that our proposed 
approach has several distinctive advantages over the original k-means and other 
clustering methods. 

Keywords: data, k-means clustering algorithms, oversampling, K-Subset. 

1 Introduction 

Cluster analysis is a well-studied domain in data mining. In cluster analysis data is 
analyzed to find hidden relationships between each other to group a set   of objects 
into clusters. One of the most popular methods in cluster analysis is k-means 
algorithm. The popularity and applicability of k-means algorithm in real time 
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applications is due to its simplicity and high computational capability. However, 
further investigation is the need of the hour to better understand the efficiency of k-
means algorithm with respect to the data distribution used for analysis.  

A good amount of research had done on the class balance data distribution for the 
performance analysis of k-means algorithm. For skewed-distributed data, the k-means 
algorithm tend to generate poor results as some instances of majority class are 
portioned into minority class, which makes clusters to have relatively uniform size 
instead of input data have varied cluster of non-uniform size. In [1] authors have 
defined this abnormal behavior of k-means clustering as the “uniform effect”. It is 
noteworthy that class imbalance is emerging as an important issue in cluster analysis 
especially for k-means type algorithms because many real-world problems, such as 
remote-sensing, pollution detection, risk management, fraud detection, and especially 
medical diagnosis are of class imbalance. Furthermore, the rare class with the lowest 
number of instances is usually the class of interest from the point of view of the 
cluster analysis.  

Liu et al. [2], proposed a multiprototype clustering algorithm, which applies the k-
means algorithm to discover clusters of arbitrary shapes and sizes. However, there are 
following problems in the real applications of these algorithms to cluster imbalanced 
data. 1) These algorithms depend on a set of parameters whose tuning is problematic 
in practical cases. 2) These algorithms make use of the randomly sampling technique 
to find cluster centers. However, when data are imbalanced, the selected samples 
more probably come from the majority classes than the minority classes. 3) The 
number of clusters k needs to be determined in advance as an input to these 
algorithms. In a real dataset, k is usually unknown. 4) The separation measures 
between sub-clusters that are defined by these algorithms cannot effectively identify 
the complex boundary between two sub-clusters. 5) The definition of clusters in these 
algorithms is different from that of k-means. Xiong et al. [1] provided a formal and 
organized study of the effect of skewed data distributions on the hard k-means 
clustering. However, the theoretic analysis is only based on the hard k-means 
algorithm. Their shortcomings are analyzed and a novel algorithm is proposed. 

2 Class Imbalance Learning  

One of the most popular techniques for alleviating the problems associated with class 
imbalance is data sampling. Data sampling alters the distribution of the training data 
to achieve a more balanced training data set. This can be accomplished in one of two 
ways: under sampling or oversampling. Under sampling removes majority class 
examples from the training data, while oversampling adds examples to the minority 
class. Both techniques can be performed either randomly or intelligently. 

The random sampling techniques either duplicate (oversampling) or remove (under 
sampling) random examples from the training data. Synthetic minority oversampling 
technique (SMOTE) [3] is a more intelligent oversampling technique that creates new 
minority class examples, rather than duplicating existing ones. Wilson’s editing (WE) 
intelligently under-samples data by only removing examples that are thought to be noisy.  
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Finding minority class examples effectively and accurately without losing overall 
performance is the objective of class imbalance learning. The fundamental issue to be 
resolved is that the clustering ability of most standard learning algorithms is 
significantly compromised by imbalanced class distributions. They often give high 
overall accuracy, but form very specific rules and exhibit poor generalization for the 
small class. In other words, over fitting happens to the minority class. 
Correspondingly, the majority class is often over generalized. Particular attention is 
necessary for each class. It is important to know if a performance improvement 
happens to both classes and just one class alone.  

3 Related Work  

In this section, we first review the major research about clustering in class imbalance 
learning and explain why we choose oversampling as our technique in this paper.  

Tapas Kanungo et al., [4] have presented a simple and efficient implementation of 
Lloyd's k-means clustering algorithm, which stores the multidimensional data points 
in a kd-tree. A kd-tree is a binary tree, which represents a hierarchical subdivision of 
the point set's bounding box using axis aligned splitting hyperplanes. Renato Cordeiro 
de Amorim et al., [5] have proposed a variation of k-means for tackling against noisy 
features using feature weights in the criterion. Serkan Kiranyaz et al., [6] have 
proposed a framework using exhaustive k-means clustering technique for addressing 
the problem in a long term ECG signal, known as Holter register. The exhaustive K-
means clustering is used in order to find out (near-) optimal number of key-beats as 
well as the master key-beats. The expert labels over the master key-beats are then 
back-propagated over the entire ECG record to obtain a patient-specific, long-term 
ECG classification. 

Haitao xiang et al., [7] have proposed a local clustering ensemble learning method 
based on improved AdaBoost (LCEM) for rare class analysis. LCEM uses an 
improved weight updating mechanism where the weights of samples which are 
invariably correctly classified will be reduced while that of samples which are 
partially correctly classified will be increased.  Amuthan Prabakar et al., [8] have 
proposed a supervised network anomaly detection algorithm by the combination of k-
means and C4.5 decision tree exclusively used for portioning and model building of 
the intrusion data. The proposed method is used mitigating the Forced Assignment 
and Class Dominance problems of the k-Means method. Li Xuan et al., [9] have 
proposed two methods, in first method they applied random sampling of majority 
subset to form multiple balanced datasets for clustering and in second method they 
observed the clustering partitions of all the objects in the dataset under the condition 
of balance and imbalance at a different angle. Christos Bouras et al., [10] have 
proposed W-k means clustering algorithm for applicability on a corpus of news 
articles derived from major news portals. The proposed algorithm is an enhancement 
of standard k-means algorithm using the external knowledge for enriching the ‘‘bag 
of words’’ used prior to the clustering process and assisting the label generation 
procedure following it. 
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P.Y. Mok et al., [11] have proposed a new clustering analysis method that 
identifies the desired cluster number and produces, at the same time, reliable 
clustering solutions. It first obtains many clustering results from a specific algorithm, 
such as Fuzzy C-Means (FCM), and then integrates these different results as a 
judgment matrix. An iterative graph-partitioning process is implemented to identify 
the desired cluster number and the final result.Luis A. Leiva et al., [12] have proposed 
Warped K-Means, a multi-purpose partition clustering procedure that minimizes the 
sum of squared error criterion, while imposing a hard sequentiality constraint in the 
classification step on datasets embedded implicitly with sequential information. The 
proposed algorithm is also suitable for online learning data, since the change of 
number of centroids and easy updating of new instances for the final cluster is 
possible. M.F.Jiang et al., [13] have proposed variations of k-means algorithm to 
identify outliers by clustering the data the initial phase then using minimum spanning 
tree to identify outliers for their removal. 

Jie Cao et al., [14] have proposed a Summation-bAsed Incremental Learning 
(SAIL) algorithm for Information-theoretic K-means (Info-Kmeans) aims to cluster 
high-dimensional data, such as images featured by the bag-of-features (BOF) model, 
using K-means algorithm with KL-divergence as the distance. Since SAIL is a greedy 
scheme it first selects an instance from data and assigns it to the most suitable cluster. 
Then the objective-function value and other related variables are updated immediately 
after the assignment. The process will be repeated until some stopping criterion is 
met. One of the shortcomings is to select the appropriate cluster for an instance. Max 
Mignotte [15] has proposed a new and simple segmentation method based on the K-
means clustering procedure for applicability on image segmentation. The proposed 
approach overcome the problem of local minima, feature space without considering 
spatial constraints and uniform effect. 

4 Framework of k-Subset Algorithm  

This section presents the proposed algorithm, whose main characteristics are depicted 
in the following sections. Initially, the main concepts and principles of k-means are 
presented. Then, the definition of our proposed K-subset is introduced in detail.  

K-means is one of the simplest unsupervised learning algorithms, first proposed by 
Macqueen in 1967, which has been used by many researchers to solve some well-
known clustering problems [16]. The technique classifies a given data set into a 
certain number of clusters (assume k clusters). The algorithm first randomly initializes 
the clusters center. The next step is to calculate the distance between an object and the 
centroid of each cluster. Next each point belonging to a given data set is associated 
with the nearest center. The cluster centers are then re-calculated. The process is 
repeated with the aim of minimizing an objective function knows as squared error 
function given by: 

                          
                  (1) 

 
 

( )211 vx ji

Ci

j
C
iJv −= ==

Downloaded form http://iranpaper.ir



 Subset K-Means Approach for Handling Imbalanced-Distributed Data 501 

Where, ( )vx ji
−  is the Euclidean distance between the data point xi

and 

cluster centerv j
 , Ci is the number of data points in cluster and c is the number of 

i
th

cluster centers. 

The entire process is given in the following algorithm, 

4.1 Dividing Majority and Minority Subset 

An easy way to sample a dataset is by selecting instances randomly from all classes. 
However, sampling in this way can break the dataset in an unequal priority way and 
more number of instances of the same class may be chosen in sampling. To resolve 
this problem and maintain uniformity in sample, we propose a sampling strategy 
called weighted component sampling. Before creating multiple subsets, we will create 
the number of majority subsets depending upon the number of minority instances. 

4.2 Identifying Number of Subsets of Majority Class 

In the next phase of the approach, the ratio of majority and minority instances in the 
unbalanced dataset is used to decide the number of subset of majority instances (T) to 
be created. 

T= no. of majority inst (N)./no. of minority inst (P). 

4.3 Combing the Majority Subsets and Minority Subset  

The so formed majority subsets are individual combined with the only minority subset 
to form multiple balanced sub datasets of every dataset. The number of balanced sub 
datasets formed depends upon the imbalance ratio and the unique properties of the 
dataset  

4.4 Averaging the measures  

The subsets of balanced datasets created are used to run multiple times and the 
resulted values are averaged to find the overall result. This newly formed multiple 
subsets are applied to a base algorithm; in this case k-means is used to obtain different 
measures such as AUC, Precision, F-measure, TP Rate and TN Rate. 
 

Algorithm : K-Subset  
1: {Input: A set of minor class examples P, a set Of major class examples N,  jPj <jN j, and 
T, the number of subsets to be sampled from N.} 
2: i ← 0, T=N/P. repeat 
3: i = i + 1 
4: Randomly sample a subset Ni  from N,   jNij  = jPj. 
5: Combine P and Ni to form NPi  
6: Apply filter on a NPi 
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7: Train and Learn on a base Algorithm (k-means) using     
      NPi. Obtain the values of AUC,TP,FP,F-Measure  
8: until i = T 
9: Output: Average Measure; 

5 Datasets 

In the study, we have considered 10 binary data-sets which have been collected from 
the KEEL [18] and UCI [17] machine learning repository Web sites, and they are very 
varied in their degree of complexity, number of classes, number of attributes, number 
of instances, and imbalance ratio (the ratio of the size of the majority class to the size 
of the minority class). The number of classes’ ranges up to 2, the number of attributes 
ranges from 8 to 60, the number of instances ranges from 57 to 3772, and the 
imbalance ratio is up to 15.32. This way, we have different Imbalance Ratios (IRs): 
from low imbalance to highly imbalanced data-sets. Table 1 summarizes the 
properties of the selected data-sets: for each data-set, S.no, Dataset name, the number 
of examples (#Ex.), number of attributes (#Atts.), class name of each class (minority 
and majority) and the IR. This table is ordered according to the name of the datasets 
in alphabetical order. We have obtained the AUC metric estimates by means of a 10-
fold cross-validation. That is, the data-set was split into ten folds, each one containing 
10% of the patterns of the dataset. For each fold, the algorithm is trained with the 
examples contained in the remaining folds and then tested with the current fold. The 
data partitions used in this paper can be found in UCI-dataset repository [17] so that 
any interested researcher can reproduce the experimental study. The algorithms used 
in the experimental study and their parameter settings, which are obtained from the 
KEEL [18] and WEKA [19] software tools. 

 

Table 1. Summary of benchmark imbalanced datasets 

 
 
Several clustering methods have been selected and compared to determine whether 

the proposal is competitive in different domains with the other approaches. Algorithms 
are compared on equal terms and without specific settings for each data problem.  

__________________________________________________
S.no  Datasets   # Ex.  # Atts.     Class (_,+)                      IR
__________________________________________________
1.   Breast_w       699     9     (benign; malignant)               1.90
2.   Colic             368     22   (yes; no)                                 1.71
3.   Diabetes        768    8     (tested-potv; tested-negtv)     1.87
4.   Ecolic            336    7   (cp; oml)                                  2.33
5.   Hepatitis       155    19   (die; live)                                3.85
6.   Ionosphere   351    34   (b;g)                                        1.79
7.   Labor            57     17   (bad; good)                              1.85
8.  Sick             3772   30   (negative; sick)                      15.32
9.  Sonar           208     60   (rock ; mine )                          1.15
10. Vote           435     17   (democrat ; republican )          1.58
__________________________________________________
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6 Experimental Results  

Table 2-9 presents the performance of each clustering technique averaged across all 
learners and data sets. These tables give a general view of the performance of each 
technique using each of the eight performance metrics. Tables 2-9 provide both the 
numerical average performance (Mean) and the standard deviation (SD) results. If the 
proposed technique is better than the compared technique then ‘●’ symbol appears in 
the column. If the proposed technique is not better than the compared technique then 
‘○’ symbol appears in the column. The mean performances were significantly 
different according to the T-test at the 95% confidence level.  

We carry out the empirical comparison of our proposed algorithm with the 
benchmarks. Our aim is to answer several questions about the proposed learning 
algorithms in the scenario of two-class imbalanced problems. 

1) In first place, we want to analyze which one of the approaches is able to better 
handle a large amount of imbalanced data-sets with different IR, i.e., to show which 
one is the most robust method. 

2) We also want to investigate their improvement with respect to classic clustering 
methods and to look into the appropriateness of their use instead of applying a unique 
preprocessing step and training a single method. That is, whether the trade-off 
between complexity increment and performance enhancement is justified or not. 
Given the amount of methods in the comparison, we cannot afford it directly. On this 
account, we compared the proposed algorithm with each and every algorithm 
independently. This methodology allows us to obtain a better insight on the results by 
identifying the strengths and limitations of our proposed method on every compared 
algorithm. The clustering evaluations were conducted on ten widely used datasets. 
These real world multi-dimensional datasets are used to verify the proposed clustering 
method. Table 2, 3, 4, 5, 6, 7, 8 and 9 reports the results of Accuracy, AUC, Precision, 
Recall, F-measure, Specificity, FP Rate and FN Rate respectively for all the ten 
datasets from UCI. 

A two-tailed corrected resampled paired t-test is used in this paper to determine 
whether the results of the cross-validation show that there is a difference between the 
two algorithms is significant or not. Difference in accuracy is considered significant 
when the p-value is less than 0.05 (confidence level is greater than 95%). The results 
in the tables show that K-Subset has given a good improvement on all the clustering 
measures. Two main reasons support the conclusion achieved above. The first one is 
the decrease of instances in majority subset, has also given its contribution for the 
better performance of our proposed K-Subset algorithms. The second reason, it is 
well-known that the resampling of synthetic instances in the minority subset is the 
only way in oversampling but conduction proper exploration – exploitation of 
prominent instances in minority subset is the key for the success of our algorithm. 
Another reason is the deletion of noisy instances by the interpolation mechanism of 
K-Subset. 
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Table 2. Summary of tenfold cross validation performance for Accuracy on all the datasets 

 

 

Table 3. Summary of tenfold cross validation performance for AUC on all the datasets 

 

 

Table 4. Summary of tenfold cross validation performance for Precision on all the datasets 

 
 

 

_________________________________________________________________________________
Datasets          K-Means        Density                FF      EM                  Hier          K-Subset   
_________________________________________________________________________________
Breast_w      95.82±2.26○     96.22±2.19○    84.94±6.96●    93.75±2.79● 65.52±0.44● 94.64±3.15 
Colic            60.57±11.89○   65.30±10.85○   58.67±9.91●     66.13±7.11○    63.05±1.13○ 76.96±10.2 
Diabetes       65.42±5.87○     65.60±5.68○     65.16±3.42○     64.67±5.74○    65.11±0.34○ 63.07±6.22 
Ecolic          55.86±6.77● 56.37±6.72●     62.41±6.56●      60.60±5.33●   70.00±0.00○ 81.74±5.47 
Hepatitis     71.09±12.58○ 73.15±12.16○   72.14±12.77○   73.83±10.53○ 79.38±2.26○ 76.65±16.03 
Ionosphere  70.80±6.71●     73.06±6.35○    62.75±6.65●     73.08±6.47○   64.10±1.35● 69.70±10.3 
Labor          65.45±22.84● 69.12±21.69○  74.73±13.17○   55.67±21.78● 64.67±3.07●  64.37±25.06
Sick            73.75±7.86●     71.28±8.74●    87.29±6.06○    50.01±26.34●   93.88±0.08○  79.19±5.16
Sonar          52.43±10.28○ 50.12±10.40 50.94±8.28      49.59±9.55●    51.78±3.41    70.10±14.44
Vote            85.73±5.30 87.22±4.64○    84.54±8.10●    60.59±7.74●    61.38±0.81●    88.19±8.84
_________________________________________________________________________________

_________________________________________________________________________________
Datasets          K-Means        Density                FF      EM                  Hier          K-Subset   
_________________________________________________________________________________
Breast_w   .950±0.027○    .966±0.021○    .785±0.098●    .951±0.022○  .500±0.000●    .947±0.030 
Colic         .628±0.108○ .678±0.092○   .570±0.114●    .691±0.068○    .500±0.000●    .766±0.105  
Diabetes    .608±0.067● .617±0.068○   .520±0.044●    .670±0.070○     .502±0.006●    .634±0.062  
Ecolic        .534±0.067● .535±0.066●   .521±0.057●    .567±0.051●     .500±0.000●    .921±0.054  
Hepatitis    .753±0.136○ .781±0.122○   .670±0.163●    .800±0.101○     .500±0.000●    .768±0.160  
Ionosphere  .706±0.080●     .743±0.079○   .530±0.067●    .771±0.058○     .500±0.000●    .703±0.102  
Labor       .631±0.237● .668±0.233○   .657±0.169○    .586±0.196●     .500±0.000●    .640±0.254  
Sick            .574±0.157○ .567±0.154○   .481±0.038●    .516±0.086●     .500±0.000●    .768±0.054
Sonar          .521±0.103○     .498±0.104      .513±0.082○    .497±0.096●     .500±0.000○    .719±0.148 
Vote           .871±0.053○ .885±0.047○   .855±0.083●     .759±0.053●    .500±0.000●    .877±0.089  
_________________________________________________________________________________

_________________________________________________________________________________
Datasets          K-Means        Density                FF      EM                  Hier          K-Subset   
_________________________________________________________________________________
Breast_w    .961±0.024● .989±0.015○    .823±0.071●    .998±0.007○     .655±0.004●    .921±0.048 
Colic          .784±0.107○ .821±0.083○     .719±0.120●    .838±0.069○     .630±0.011●    .765±0.130 
Diabetes     .725±0.047○ .734±0.051○     .665±0.044●    .821±0.072○     .652±0.004●    .592±0.054 
Ecolic         .727±0.052○ .727±0.053○     .712±0.035○    .746±0.036○     .700±0.000○    .810±0.093 
Hepatitis     .426±0.150● .453±0.156●     .405±0.233●    .457±0.136●     .000±0.000●    .787±0.220 
Ionosphere .557±0.147● .573±0.145●     .309±0.369●    .585±0.068       .000±0.000●    .821±0.131 
Labor          .474±0.389● .523±0.388○     .532±0.484○    .364±0.437●     .000±0.000●    .631±0.327 
Sick            .952±0.026● .952±0.028●     .936±0.005●    .958±0.037○     .939±0.001●    .845±0.068 
Sonar          .493±0.133● .460±0.140●     .422±0.238●    .459±0.108●     .110±0.198●    .866±0.142 
Vote           .952±0.048○ .960±0.042○     .929±0.077●    .996±0.017○     .614±0.008●    .906±0.131 
_________________________________________________________________________________
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Table 5. Summary of tenfold cross validation performance for Recall on all the datasets 

 

Finally, we can make a global analysis of results combining the results offered by 
Tables from 2–9: 

Our proposals, K-Subset is the best performing one when the data sets are of 
imbalance category. We have considered a complete competitive set of methods and 
an improvement of results is expected in the benchmark algorithms i;e K-means, 
Density, FF, EM and  Hier. However, they are not able to outperform K-Subset. In 
this sense, the competitive edge of K-Subset can be seen. 

Table 6. Summary of tenfold cross validation performance for F-measure on all the datasets 

 

Table 7. Summary of tenfold cross validation performance for Specificity  on all the datasets 

 

_________________________________________________________________________________
Datasets          K-Means        Density                FF      EM                  Hier          K-Subset   
_________________________________________________________________________________
Breast_w    .961±0.024● .989±0.015○    .823±0.071●    .998±0.007○     .655±0.004●    .921±0.048  
Breast_w    .976±0.022○  .953±0.029● .992±0.033○     .907±0.042● 1.000±0.000○   .977±0.030 
Colic          .541±0.231○ .582±0.195○     .635±0.229○    .576±0.100○    1.000±0.000○   .735±0.183  
Diabetes    .760±0.091○ .747±0.089○     .957±0.106○    .594±0.075●    1.000±0.000○   .772±0.083  
Ecolic        .595±0.108●    .606±0.112●     .778±0.121●    .664±0.081● 1.000±0.000○    .982±0.080 
Hepatitis    .824±0.225○ .865±0.190○    .583±0.319●    .906±0.153○    .000±0.000●     .781±0.251  
Ionosphere .702±0.187     .787±0.195○     .185±0.284● .912±0.074○    .000±0.000●      .594±0.178 
Labor         .555±0.413● .588±0.412○     .345±0.338●    .330±0.403●    .000±0.000●     .710±0.363  
Sick           .779±0.122● .755±0.139●     .957±0.078○    .719±0.169●    1.000±0.000○   .772±0.087
Sonar          .471±0.201● .471±0.215●     .524±0.392●    .525±0.194●    .235±0.425●     .654±0.190  
Vote           .810±0.069○ .829±0.064○     .814±0.098●    .931±0.062○    1.000±0.000○   .837±0.133  
_________________________________________________________________________________

_________________________________________________________________________________
Datasets          K-Means        Density                FF      EM                  Hier          K-Subset   
_________________________________________________________________________________
Breast_w    .968±0.017● .971±0.017●    .898±0.045●    .950±0.024●    .792±0.003●    .947±0.030  
Colic          .608±0.162● .662±0.137○    .638±0.141●    .678±0.082○     .773±0.008○    .729±0.143  
Diabetes    .739±0.053● .737±0.050●    .779±0.049●    .685±0.055●     .789±0.003○    .668±0.056  
Ecolic      .649±0.074○ .655±0.074○    .739±0.066○    .700±0.052○     .824±0.000○    .876±0.079  
Hepatitis    .549±0.157● .582±0.153●    .451±0.226●    .598±0.131       .000±0.000●     .755±0.197 
Ionosphere .617±0.155● .660±0.157○    .173±0.222●    .711±0.059○    .000±0.000●     .661±0.145  
Labor          .481±0.358○ .522±0.357○    .404±0.370●    .328±0.387○    .000±0.000●     .640±0.303  
Sick             .851±0.066○ .834±0.077○    .945±0.044○    .807±0.109○     .968±0.000○    .804±0.066
Sonar          .462±0.149●    .447±0.159●    .414±0.257● .480±0.133●      .149±0.270●    .724±0.151 
Vote           .873±0.048○ .888±0.042○    .864±0.075●    .961±0.037○      .761±0.006● .862±0.102  
_________________________________________________________________________________

_________________________________________________________________________________
Datasets          K-Means        Density                FF      EM                  Hier          K-Subset    
_________________________________________________________________________________
Breast_w    .968±0.017○ .979±0.029○    .578±0.196●    .996±0.012○     .000±0.000●    .911±0.055  
Colic          .608±0.162● .773±0.157●    .506±0.336●    .807±0.093○     .000±0.000●    .799±0.148  
Diabetes     .739±0.053○ .487±0.155●    .082±0.163●    .746±0.145○     .000±0.000●    .500±0.094  
Ecolic         .649±0.074○ .464±0.149○    .264±0.145●    .470±0.100○     .000±0.000●    .861±0.074  
Hepatitis     .549±0.157○ .696±0.143○    .757±0.154○    .695±0.125○   1.000±0.000○  .755±0.263
Ionosphere .617±0.155● .699±0.110●    .875±0.215○    .629±0.098●     1.000±0.000○  .812±0.162  
Labor         .481±0.358● .749±0.281○    .968±0.117○    .854±0.257○     1.000±0.000○  .570±0.380  
Sick           .851±0.066○ .401±0.379○   .033±0.095●    .500±0.434○     .000±0.000●    .852±0.063
Sonar          .462±0.149○    .528±0.198○    .502±0.357○    .470±0.171○   .768±0.420○    .784±0.251 
Vote           .873±0.048● .941±0.075      .895±0.122●    .996±0.017○     .000±0.000●    .918±0.116 
_________________________________________________________________________________
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Table 8. Summary of tenfold cross validation performance for FP Rate on all the datasets 

 

Table 9. Summary of tenfold cross validation performance for FN Rate on all the datasets 

 
 

Considering that K-Subset behaves similarly or not effective than K-means shows 
the unique properties of the datasets where there is scope of improvement in minority 
subset and not in majority subset. Our K-Subset can mainly focus on improvements in 
majority subset which is not effective for some unique property datasets. The 
Accuracy, AUC, Recall, F-measure, TN Rate, FP Rate and FN Rate measure have 
shown to perform well with respect to K-Subset. The strengths of our model are that 
K-Subset only increases the number of majority subsets thereby strengthens the 
minority class. One more point to consider is our method tries to remove the noisy 
instances from both majority and minority set if any applicable. Finally, we can say 
that K-Subset is one of the best alternatives to handle class imbalance problems 
effectively. This experimental study supports the conclusion that the a prominent 
recursive oversampling approach of majority subsets can improve the class imbalance 
behavior when dealing with imbalanced data-sets, as it has helped the K-Subset 
methods to be the best performing algorithm when compared with four classical and 
well-known algorithms: K-means, Density, FF, EM and a well-established 
Hierarchical algorithm. 

_________________________________________________________________________________
Datasets          K-Means        Density                FF      EM                  Hier          K-Subset    
_________________________________________________________________________________
Breast_w    .076±0.049 .021±0.029●     .422±0.196○    .004±0.012● 1.000±0.000○  .083±0.054  
Colic          .285±0.240○ .227±0.157●     .494±0.336○    .193±0.093●     1.000±0.000○  .201±0.148  
Diabetes     .544±0.145○ .513±0.155●     .918±0.163○    .254±0.145●     1.000±0.000○  .500±0.094  
Ecolic         .526±0.143○ .536±0.149○     .736±0.145○    .530±0.100○     1.000±0.000○  .138±0.074  
Hepatitis     .318±0.146● .304±0.143●     .243±0.154●    .305±0.125●     .000±0.000●    .245±0.263  
Ionosphere  .289±0.110○   .301±0.110○     .125±0.215●    .371±0.098○     .000±0.000●    .188±0.162  
Labor          .292±0.313○ .251±0.281●      .032±0.117● .146±0.257●     .000±0.000● .430±0.380  
Sick            .614±0.366● .599±0.379●      .967±0.095○    .500±0.434●     .000±0.000● .148±0.062
Sonar          .429±0.195● .472±0.198●      .498±0.357● .530±0.171●     .232±0.420● .216±0.251  
Vote           .068±0.078○ .059±0.075        .105±0.122○    .004±0.017●     1.000±0.000○ .083±0.116 
_________________________________________________________________________________

_________________________________________________________________________________
Datasets          K-Means        Density                FF      EM                  Hier          K-Subset   
_________________________________________________________________________________
Breast_w    .024±0.022●   .047±0.029○    .008±0.033●    .093±0.042○  .000±0.000●     .023±0.030 
Colic          .459±0.231● .418±0.195●    .365±0.229●    .424±0.100●    .000±0.000●     .265±0.183 
Diabetes    .240±0.091● .254±0.089●    .043±0.106●    .406±0.075○    .000±0.000●     .229±0.083 
Ecolc         .405±0.108○ .394±0.112○     .222±0.121○    .336±0.081○    .000±0.000●     .019±0.080 
Hepatitis    .176±0.225● .135±0.190 ●    .417±0.319○    .094±0.153●    1.000±0.000○   .219±0.251 
Ionosphere .298±0.187● .213±0.195●    .815±0.284○    .088±0.074●    1.000±0.000○   .407±0.178 
Labor          .445±0.413● .413±0.412●    .650±0.340○    .540±0.436○    1.000±0.000○   .290±0.363 
Sick           .221±0.122○ .245±0.139○    .043±0.078●    .281±0.169○     .000±0.000●    .278±0.132
Sonar         .529±0.201○    .529±0.215○    .476±0.392○    .475±0.194○     .765±0.425○    .346±0.190 
Vote          .190±0.069● .171±0.064●    .186±0.098●    .069±0.062●      .000±0.000● .163±0.133 
_________________________________________________________________________________
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7 Conclusion  

In this paper, a novel clustering algorithm for imbalanced distributed data has been 
proposed. This method uses unique oversampling technique to almost balance dataset 
such that to minimize the “uniform effect” in the clustering process. Empirical results 
have shown that K-Subset considerably reduces the uniform effect while retaining or 
improving the clustering measure when compared with benchmark methods. In fact, 
the proposed method may also be useful as a frame work for data sources for better 
clustering measures. 
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