

Table 167. A set of Larson-Miller parameters fitted to all creep-rupture data in [1] according to $\log t_R = (T+273.15)^{-1} [b_0+b_1 \log S+b_2 (\log S)^2] - C$

n	С	b_0	b_1	b_2
263	1.031462×10	2.204935×10^4	-3.439566×10^{3}	-4.937139×10^{2}

2.4.15.3.3 Elongation and reduction of area of ruptured specimens

Elongation and reduction of area of ruptured specimens tested at 800, 900 and 1000 °C as a function of time to rupture are shown in Fig. 383. The ductility of the specimens tested at 800 °C and 900 °C is almost constant and not high, approximately some percent. The ductility of the specimens tested at 1000 °C up to 10^4 h has a similar tendency as those tested at lower temperatures, however, it increases with increasing time for rupture times longer than 10^3 h.

Landolt-Börnstein New Series VIII/2B