Left inverse of octonion matrix
X = linv(A, B)
This function computes the left inverse operator of an octonion matrix. The result, if it exists, is the octonion matrix that satisfies X * A = B. If B is omitted it defaults to an identity matrix, and X will then be the left inverse of A.
Caution: this function will yield accurate results only for small matrices, of the order of five or six rows or columns. Until a better algorithm is found, there is no way to compute an accurate inverse for a larger matrix.
>> A = rando(3) A = 3x3 octonion array >> B = linv(A) B = 3x3 octonion array >> scalar(B * A) ans = 1.0000 -0.0000 0.0000 0.0000 1.0000 -0.0000 -0.0000 0.0000 1.0000 >> abs(vector(B * A)) ans = 1.0e-09 * 0.0428 0.0358 0.0434 0.1019 0.0920 0.0980 0.0629 0.0637 0.0706