Right inverse of octonion matrix
X = rinv(A, B)
This function computes the right inverse operator of an octonion matrix. The result, if it exists, is the octonion matrix that satisfies A * X = B. If B is omitted it defaults to an identity matrix, and X will then be the right inverse of A.
Caution: this function will yield accurate results only for small matrices, of the order of five or six rows or columns. Until a better algorithm is found, there is no way to compute an accurate inverse for a larger matrix.
>> A = rando(3) A = 3x3 octonion array >> B = rinv(A) B = 3x3 octonion array >> scalar(A * B) ans = 1.0000 -0.0000 -0.0000 -0.0000 1.0000 0.0000 -0.0000 0.0000 1.0000 >> abs(vector(A * B)) ans = 1.0e-09 * 0.0495 0.2545 0.1272 0.0658 0.2275 0.1526 0.0781 0.2126 0.0819