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proposed. To design these algorithms an innovation approach is used, assuming that the
state-space model of the signal is unknown and using only covariance information. To
measure the precision of the proposed estimators formulas to calculate the filtering and
smoothing error covariance matrices are also derived. The effectiveness of the estimators
is illustrated by a numerical simulation example where a signal is estimated using
observations from two randomly delayed sensors having different delay properties.
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1. Introduction

Estimation of signals using data coming from sensors or measurement devices that may be randomly delayed is a sig-
nificant problem in different application fields. For example, in engineering applications involving communication networks
with a heavy network traffic, the measurements available may not be up-to-date, and this fact must be considered in the
study of the signal estimation problem. An appropriate model for such situations with randomly varying delays consists of
interpreting the delay as a stochastic process, whose statistical properties are included in the system description [1].

In the last years, the state estimation problem for system models with randomly varying delays has been widely in-
vestigated. Assuming full knowledge of the state-space model for the signal process to be estimated, we will mention the
following papers, among others: Ray et al. [2] proposed a recursive linear filtering algorithm which modifies the conven-
tional one to fit situations where the arrival of sensor data at the controller terminal may be randomly delayed. In [3], the
state estimation problem for a model involving randomly varying bounded sensor delays is treated by reformulating it as an
estimation problem in systems with stochastic parameters. More recently, Su and Lu [4] have designed an extended Kalman
filtering algorithm which provides optimal estimates of interconnected network states for systems in which some or all
measurements are delayed. Matveev and Savkin [5] have proposed a recursive minimum variance state estimator in linear
discrete-time partially observed systems perturbed by white noises, when the observations are transmitted via communi-
cation channels with random transmission times and various signal measurements may incur independent delays. Wang
et al. [6] have designed a robust linear filter for linear uncertain discrete-time stochastic systems with randomly varying
sensor delay.
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As indicated previously, the study performed in all these papers is based on the knowledge of the signal state-space
model; however, this information is not available in many practical situations and the signal estimation problem must be
addressed using another type of information. Assuming knowledge of the covariance functions of the processes involved
in the observation equation and mutual independence of such processes, the signal estimation problem from randomly
delayed observations has been addressed, for instance, in [7], where a linear filtering and fixed-point smoothing algorithm
from randomly delayed observations is designed; more recently, this study has been generalized in [8], where a recursive
algorithm for the second-order polynomial filter and fixed-point smoother is proposed. The linear filtering and smoothing
problems have been also addressed from a more general observation model, involving correlated signal and additive noise,
in [9,10].

Although all the papers mentioned above involve systems with randomly delayed sensors, their major handicap is that
all the sensors are assumed to have the same delay characteristics. Recently, Hounkpevi and Yaz [11] have generalized this
situation by considering multiple delayed sensors with different delay characteristics and, using the state-space model, the
linear minimum variance state filter have been deduced for this new model. In the current paper, this general situation
is considered and the least-squares linear filtering and smoothing (fixed-point and fixed-interval) problems are addressed
assuming that the state-space model of the signal to be estimated is not known, but only the covariance functions of
the signal and noise, as well as the parameters of the Bernoulli variables modeling the delays, are available. Therefore the
proposed algorithms are applicable not only to signal processes that can be estimated by the conventional formulation using
the state-space model but also to those for which a realization of the state-space model is not available.

2. Problem statement

In this section, the least-squares (LS) linear estimation problem of a n-dimensional discrete-time random signal, zk , from
noisy measurements coming from multiple sensors which are one-step randomly delayed, with different delay character-
istics, is formulated. First, the observation model for these measurements and the hypotheses about the signal and noise
processes are described.

2.1. Delayed observation model

Consider m scalar sensors whose real measurements, ỹi
k , of the signal, zk , are perturbed by additive noise vectors vi

k;
that is,

ỹi
k = Hi

kzk + vi
k, k � 1, i = 1, . . . ,m. (1)

Assume that at time k = 1 the real measurements, ỹi
1, are always available for the estimation, but at each time k > 1 the

available measurements coming from each sensor may be randomly delayed by one sampling period, according to different
delay characteristics. It is also supposed that the ith sensor is delayed independently of the others and that a delay at
time k is independent of a delay at time s. Therefore, if {γ i

k ; k > 1}, i = 1, . . . ,m, denote mutually independent sequences
of independent Bernoulli random variables with P [γ i

k = 1] = pi
k , the available measurements of the ith sensor, yi

k , are
described by

yi
k = (

1 − γ i
k

)̃
yi

k + γ i
k ỹi

k−1, k > 1; yi
1 = ỹi

1, i = 1, . . . ,m. (2)

From (2) it is clear that, if γ i
k = 1, which occurs with probability pi

k , then yi
k = ỹi

k−1 and the measurement of the ith

sensor is delayed by one sampling period; otherwise, if γ i
k = 0, then yi

k = ỹi
k , which means that the measurement is up-to-

date with probability 1 − pi
k . Therefore, the variables {γ i

k ; k > 1} model the random delay of the ith sensor and the values
{pi

k, k > 1} represent the probabilities of delay in the measurements of the ith sensor.
In applications of communication networks, the noises {γ i

k ; k > 1} usually represent the random delays from sensors to
controller and the assumption of one-step sensor delay is based on the supposition that the induced data latency from the
sensors to the controller is restricted so as not to exceed the sampling period. The delayed model considered in [7] covers
those situations in which all the sensors present the same delay characteristics (γ i

k = γk , ∀i), while the current delayed
model considers measurements from multiple sensors featuring different random delay characteristics.

To treat the LS linear estimation problem of the signal based on the randomly delayed observations (2), the following
hypotheses about the signal and noise processes are assumed:

(I) The n-dimensional signal process {zk; k � 1} has zero mean and its autocovariance function, K z
k,s = E[zk zT

s ], is expressed

in a semi-degenerate kernel form, K z
k,s = Ak BT

s , s � k, where A and B are known n × M matrix functions.

(II) For i = 1, . . . ,m, the scalar sensor noises, {vi
k; k � 1}, are zero-mean white sequences with known variances, Var[vi

k] =
Ri

k , ∀k � 1.
(III) For i = 1, . . . ,m, the processes modeling the random delay of the sensors, {γ i

k ; k > 1} are sequences of independent
Bernoulli random variables with known probabilities, P [γ i = 1] = pi , ∀k > 1.
k k
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(IV) The signal process, {zk; k � 1}, and the noise processes, {vi
k; k � 1} and {γ i

k ; k > 1}, for i = 1, . . . ,m, are mutually
independent.

To simplify the notation, (1) and (2) are rewritten in a compact form as follows:

Ỹk = Hkzk + Vk, k � 1, (3)

Yk = (
Im − Dγ

k

)
Ỹk + Dγ

k Ỹk−1, k > 1; Y1 = Ỹ1, (4)

where Ỹk = (̃y1
k , . . . , ỹm

k )T , Hk = ((H1
k )T , . . . , (Hm

k )T )T , Vk = (v1
k , . . . , vm

k )T , Yk = (y1
k , . . . , ym

k )T , Dγ
k = Diag(γ 1

k , . . . , γ m
k ) and

Im is the m × m identity matrix.
Clearly, from hypotheses (II)–(IV), the following properties hold:

(i) The m-dimensional process {Vk; k � 1} is a zero-mean white sequence with autocovariance function E[Vk V T
k ] = Rk ,

where Rk = Diag(R1
k , . . . , Rm

k ).
(ii) The random matrices {Dγ

k ; k > 1} are independent and E[Dγ
k ] = D p

k , with D p
k = Diag(p1

k , . . . , pm
k ).

(iii) The random vectors {γk = (γ 1
k , . . . , γ m

k )T , k > 1} have mean E[γk] = pk = (p1
k , . . . , pm

k )T and the correlation functions
of the random vectors γk and 1 − γk (1 = (1, . . . ,1)T is the m × 1 ones vector) are

E
[
γkγ

T
k

] = P p
k , E

[
(1 − γk)(1 − γk)

T ] = P 1−p
k , E

[
γk(1 − γk)

T ] = P p,1−p
k ,

where

P a
k =

⎛⎜⎜⎜⎝
a1

k a1
ka2

k · · · a1
kam

k
a1

ka2
k a2

k · · · a2
kam

k
...

...
. . .

...

a1
kam

k a2
kam

k · · · am
k

⎞⎟⎟⎟⎠ , P a,b
k =

⎛⎜⎜⎜⎝
0 a1

kb2
k · · · a1

kbm
k

a1
kb2

k 0 · · · a2
kbm

k
...

...
. . .

...

a1
kbm

k a2
kbm

k · · · 0

⎞⎟⎟⎟⎠
with ak = (a1

k , . . . ,am
k )T and bk = (b1

k , . . . ,bm
k )T the vectors pk and 1 − pk .

(iv) {zk; k � 1}, {Vk; k � 1} and {Dγ
k ; k > 1} are mutually independent.

2.2. Linear LS estimation problem

Our aim is to address the LS linear estimation problem of the signal, zk , based on the randomly delayed observations
{Y1, . . . , Y L}, with L � k, given in (4); more specifically, recursive algorithms for the filtering (L = k), fixed-point (k fixed and
L > k) and fixed-interval (L fixed and k < L) smoothing problems will be derived.

As known, this estimator is the orthogonal projection of the vector zk onto L(Y1, . . . , Y L), the linear space spanned
by {Y1, . . . , Y L}; so the Orthogonal Projection Lemma (OPL) states that the estimator, ẑk/L , is the only linear combination
satisfying the orthogonality property

E
[
(zk − ẑk/L)Y T

s

] = 0, s = 1, . . . , L.

Due to the fact that generally the observations are nonorthogonal vectors, we will use an innovation approach [12],
consisting of transforming the observation process {Yk; k � 1} to an equivalent process (innovation process) of orthogonal
vectors {νk; k � 1}, equivalent in the sense that each set {ν1, . . . , νL} spans the same linear subspace that {Y1, . . . , Y L}; that
is, L(ν1, . . . , νL) = L(Y1, . . . , Y L).

The innovation process is constructed by the Gram-Schmidt orthogonalization procedure, using an inductive reasoning.
Starting with ν1 = Y1, the projection of the next observation, Y2, onto L(ν1) is given by Ŷ2/1 = E[Y2ν

T
1 ](E[ν1ν

T
1 ])−1ν1;

then, the vector ν2 = Y2 − Ŷ2/1 is orthogonal to ν1 and clearly L(ν1, ν2) = L(Y1, Y2). Let {ν1, . . . , νk−1} be the set of
orthogonal vectors satisfying L(ν1, . . . , νk−1) = L(Y1, . . . , Yk−1). If now we have an additional observation Yk , we project it
onto L(ν1, . . . , νk−1); the orthogonality property allows us to find the projection by separately projecting onto each of the
previous orthogonal vectors, that is,

Ŷk/k−1 =
k−1∑
j=1

E
[
Ykν

T
j

](
E
[
ν jν

T
j

])−1
ν j;

so the next vector, νk = Yk − Ŷk/k−1, is orthogonal to the previous ones and L(ν1, . . . , νk) = L(Y1, . . . , Yk).
Note that the projection Ŷk/k−1 is the part of the observation Yk that is determined by knowledge of {Y1, . . . , Yk−1};

thus the remainder vector νk = Yk − Ŷk/k−1 can be regarded as the “new information” or the “innovation" provided by Yk ,
and the process {νk; k � 1} as the innovation process associated with {Yk; k � 1}. The causal and causally invertible linear
relation existing between the observation and innovation processes makes the innovation process unique.
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Next, taking into account that the innovations constitute a white process, we derive a general expression for the LS
linear estimator of the signal, ẑk/L . Replacing {Y1, . . . , Y L} by the equivalent set of orthogonal vectors {ν1, . . . , νL}, the signal
estimator is

ẑk/L =
L∑

j=1

hk, jν j,

where the impulse-response function hk, j , j = 1, . . . , L is calculated from the orthogonality property,

E
[
(zk − ẑk/L)ν

T
s

] = 0, s � L,

which leads to the Wiener-Hopf equation:

E
[
zkν

T
s

] =
L∑

j=1

hk, j E
[
ν jν

T
s

]
, s � L.

Due to the whiteness of the innovation process, E[ν jν
T
s ] = 0 for j �= s and the Wiener-Hopf equation is expressed as

E
[
zkν

T
s

] = hk,s E
[
νsν

T
s

]
, s � L;

consequently,

hk,s = E
[
zkν

T
s

](
E
[
νsν

T
s

])−1
, s � L

and, therefore, the following general expression for the LS linear estimator of the signal is obtained

ẑk/L =
L∑

j=1

Sk, jΠ
−1
j ν j (5)

where Sk, j = E[zkν
T
j ] and Π j = E[ν jν

T
j ].

Starting from this general expression, it is clear that the linear fixed-point smoothers, ẑk/L , L > k, can be recursively
calculated as

ẑk/L = ẑk/L−1 + Sk,LΠ
−1
L νL, L > k, (6)

with initial condition given by the linear filter, ẑk/k .
Again, taking into account expression (5), the fixed-interval smoothers, ẑk/L , k < L, can be obtained from the filter, ẑk/k ,

by adding the remaining terms of the sum in (5)

ẑk/L = ẑk/k +
L∑

j=k+1

Sk, jΠ
−1
j ν j, k < L. (7)

Therefore, our first purpose will be to design an algorithm for the filter and, afterwards, the fixed-point and fixed-interval
smoothing algorithms will be derived from the filter and expressions (6) and (7), respectively.

3. Linear filtering algorithm

In view of expression (5) for L = k, to obtain the filter, ẑk/k , it is necessary to determine the matrices Sk, j = E[zkν
T
j ], the

innovations ν j and their covariances matrices Π j , for j � k.
We will start by obtaining an explicit formula for the innovations, ν j = Y j − Ŷ j/ j−1, or equivalently for Ŷ j/ j−1, the

one-stage predictor of Y j , which, denoting T j,i = E[Y jν
T
i ], is given by

Ŷ j/ j−1 =
j−1∑
i=1

T j,iΠ
−1
i νi, j � 2; Ŷ1/0 = 0. (8)

First, we obtain T j,i = E[Y j Y T
i ] − E[Y j Ŷ T

i/i−1], for 1 � i � j − 1 and j � 2. Using (I) and properties (i), (ii) and (iv), we
have

E
[
Y j Y

T
i

] =
{

G A j G
T
Bi

, 1 < i < j − 1,

G A j G
T
B j−1

+ D p
j R j−1(Im − D p

j−1), i = j − 1,

where

G X = (
Im − D p)

H j X j + D p H j−1 X j−1, X = A, B. (9)
j j j
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Substituting these expectations in T j,i = E[Y j Y T
i ] − E[Y j Ŷ T

i/i−1] and using (8) for Ŷ i/i−1, we can write, for i > 1,

T j,i =
⎧⎨⎩ G A j G

T
Bi

− ∑i−1
l=1 T j,lΠ

−1
l T T

i,l, 1 < i < j − 1,

G A j G
T
B j−1

− ∑ j−2
l=1 T j,lΠ

−1
l T T

j−1,l + D p
j R j−1(Im − D p

j−1), i = j − 1

and, since ν1 = Y1, it is easy to see that

T j,1 = E
[
Y j Y

T
1

] =
{

G A2 BT
1 H T

1 + D p
2 R1, j = 2,

G A j BT
1 H T

1 , j > 2.

This expression for T j,i , 1 � j � i − 1, guarantees that for j � 2,

T j,i =
{

G A j J i, 1 � i < j − 1,

G A j J j−1 + F j−1, i = j − 1,
(10)

where J is a function satisfying

J i = G T
Bi

−
i−1∑
l=1

JlΠ
−1
l T T

i,l, i � 2; J1 = BT
1 H T

1 , (11)

and

F j−1 = D p
j R j−1

(
Im − D p

j−1

)
, j > 2; F1 = D p

2 R1. (12)

Substituting (10) into (8), we obtain

Ŷ j/ j−1 = G A j O j−1 + F j−1Π
−1
j−1ν j−1, j � 2, (13)

and, consequently,

ν j = Y j − G A j O j−1 − F j−1Π
−1
j−1ν j−1, j � 2,

where

O j =
j∑

i=1

J iΠ
−1
i νi, j � 1; O 0 = 0, (14)

which can be recursively obtained as

O j = O j−1 + J jΠ
−1
j ν j, j � 1; O 0 = 0. (15)

Now, to obtain the matrix J j we substitute (10) into (11), having that

J j = G T
B j

− r j−1G T
A j

− J j−1Π
−1
j−1 F j−1, j � 2; J1 = BT

1 H T
1 ,

with r j = E[O j O T
j ] recursively obtained from

r j = r j−1 + J jΠ
−1
j J T

j , j � 1; r0 = 0.

Next, the innovation covariance matrix Π j = E[ν jν
T
j ] = E[Y j Y T

j ] − E[Ŷ j/ j−1 Ŷ T
j/ j−1] will be calculated.

From (I) and properties (i)–(iv),

E
[
Y j Y

T
j

] = P 1−p
j ◦ [

H j A j BT
j H T

j + R j
] + P p

j ◦ [
H j−1 A j−1 BT

j−1 H T
j−1 + R j−1

]
+ P 1−p,p

j ◦ [
H j A j BT

j−1 H T
j−1

] + P p,1−p
j ◦ [

H j−1 B j−1 AT
j H T

j

]
, j � 2,

where ◦ denotes the Hadamard product ([C ◦ D]i j = Cij Dij).
Next, using (8) for Ŷ j/ j−1 with (10) for T j,i , we obtain

Π j = P 1−p
j ◦ [

H j A j BT
j H T

j + R j
] + P p

j ◦ [
H j−1 A j−1 BT

j−1 H T
j−1 + R j−1

]
+ P 1−p,p

j ◦ [
H j A j BT

j−1 H T
j−1

] + P p,1−p
j ◦ [

H j−1 B j−1 AT
j H T

j

]
− G A j

[
G T

B j
− J j

] − F j−1Π
−1
j−1

[
G A j J j−1 + F j−1

]T
, j � 2,

Π1 = H1 A1 BT H T + R1.
1 1
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Once the innovations ν j and their covariances matrices Π j have been specified, we must calculate Sk, j = E[zkν
T
j ] =

E[zkY T
j ] − E[zkŶ T

j/ j−1], for 1 � j � k. From (I) and properties (ii) and (iv), it is easy to see that E[zkY T
1 ] = Ak BT

1 H T
1 and

E[zkY T
j ] = AkG T

B j
for j > 1; then using (8) for Ŷ j/ j−1 in E[zkŶ T

j/ j−1], we have that

Sk, j = Ak J j, 1 � j � k, (16)

where J is the function satisfying (11). Hence, substituting Sk, j = Ak J j in (5) for L = k and using (14), it is immediate that
ẑk/k = Ak O k .

The above results are summarized in the following linear filtering algorithm:

The linear filter, ẑk/k, of the signal zk is obtained as

ẑk/k = Ak O k, k � 1, (17)

where the vectors O k are recursively calculated from

O k = O k−1 + JkΠ
−1
k νk, k � 1; O 0 = 0,

and the matrix Jk is given by

Jk = G T
Bk

− rk−1G T
Ak

− Jk−1Π
−1
k−1 Fk−1, k � 2; J1 = BT

1 H T
1 ,

with rk = E[O k O T
k ] recursively obtained from

rk = rk−1 + JkΠ
−1
k J T

k , k � 1; r0 = 0.

The innovation, νk, satisfies

νk = Yk − G Ak O k−1 − Fk−1Π
−1
k−1νk−1, k � 2; ν1 = Y1

and Πk, the innovation covariance matrix, is given by

Πk = P 1−p
k ◦ [

Hk Ak BT
k H T

k + Rk
] + P p

k ◦ [
Hk−1 Ak−1 BT

k−1 H T
k−1 + Rk−1

]
+ P 1−p,p

k ◦ [
Hk Ak BT

k−1 H T
k−1

] + P p,1−p
k ◦ [

Hk−1 Bk−1 AT
k H T

k

]
− G Ak

[
G T

Bk
− Jk

] − Fk−1Π
−1
k−1

[
G Ak Jk−1 + Fk−1

]T
, k � 2,

Π1 = H1 A1 BT
1 H T

1 + R1.

The matrices G Ak , G Bk and Fk−1 are given in (9) and (12), respectively.

The accuracy of the LS linear filter is measured by the filtering error covariance matrices

Σk/k = E
[{zk − ẑk/k}{zk − ẑk/k}T ]

.

Since the error zk − ẑk/k is orthogonal to the estimator ẑk/k , it is clear that

Σk/k = K z
k,k − E

[̂
zk/k̂ zT

k/k

]
.

Then, hypothesis (I) on the model and expression (17) for the filter lead to the following formula for the filtering error
covariance matrices

Σk/k = Ak BT
k − Akrk AT

k , k � 1. (18)

4. Linear smoothing algorithms

In this section, we present recursive algorithms for the LS linear smoothers, ẑk/L , L � k. More precisely, the fixed-point
and fixed-interval smoothing problems are addressed. In the fixed-point smoothing problem k is fixed and recursions for
increasing L are proposed (Section 4.1), while in the fixed-interval smoothing problem the number of available observations,
L, is fixed and recursions in k are established (Section 4.2). As indicated in Section 2, these algorithms will be derived by
starting from the filter and expressions (6) and (7), respectively.
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4.1. Fixed-point smoothing algorithm

To calculate the fixed-point smoothing estimators, ẑk/L , for L > k (k fixed), from (6) a recursive relation in L must be
obtained for Sk,L = E[zkν

T
L ] = E[zkY T

L ] − E[zkŶ T
L/L−1], L � k. Using (I) and properties (ii) and (iv), it is easy to see that

E[zkY T
L ] = BkG T

AL
for L > k, which, together with expression (13) for j = L, yields

Sk,L = BkG T
AL

− E
[
zk O T

L−1

]
G T

AL
− Sk,L−1Π

−1
L−1 F L−1, L > k,

and defining the function Ek,L = E[zk O T
L ], the following expression holds

Sk,L = (Bk − Ek,L−1)G T
AL

− Sk,L−1Π
−1
L−1 F L−1, L > k.

From (16), the initial condition for the expression above is clearly Sk,k = Ak Jk .
Next, using the recursive expression (15) for O L , the following formula for Ek,L is deduced

Ek,L = Ek,L−1 + Sk,LΠ
−1
L J T

L , L > k.

Its initial condition is Ek,k = Akrk; this expression is easily derived taking into account that, from the OPL, Ek,k = E[zk O T
k ] =

E[ ẑk/k O T
k ] and using (17) and that rk = E[O k O T

k ].
Summarizing these results, the following recursive fixed-point smoothing algorithm is obtained:

The fixed-point smoother ẑk/L , with L > k, of the signal zk is calculated as

ẑk/L = ẑk/L−1 + Sk,LΠ
−1
L νL, L > k,

with initial condition given by the filter, ẑk/k, and

Sk,L = (Bk − Ek,L−1)G T
AL

− Sk,L−1Π
−1
L−1 F L−1, L > k; Sk,k = Ak Jk,

where the matrices Ek,L satisfy the following recursive formula

Ek,L = Ek,L−1 + Sk,LΠ
−1
L J T

L , L > k; Ek,k = Akrk.

The filter ẑk/k, the matrices G AL , F L and J L , the innovations νL and their covariance matrices ΠL are obtained from the linear filtering
algorithm given in Section 3.

Following a similar reasoning to that used to derive the filtering error covariance matrices, but using now the recursive
formula of the fixed-point smoother, the fixed-point smoothing error covariance matrices,

Σk/L = E
[{zk − ẑk/L}{zk − ẑk/L}T ]

, L > k

are recursively obtained as follows

Σk/L = Σk/L−1 − Sk,LΠ
−1
L S T

k/L, L > k,

with initial condition Σk/k , given in (18).

4.2. Fixed-interval smoothing algorithm

To obtain the fixed-interval smoother, ẑk/L , for k < L, we must establish recursions in k when the number of available
observations, L, is fixed. From (7), we start by obtaining the coefficients Sk, j = [zkν

T
j ], for j � k + 1. As in the previous

section, the following expression holds

Sk, j = BkG T
A j

− E
[
zk O T

j−1

]
G T

A j
− Sk, j−1Π

−1
j−1 F j−1, j � k + 1,

and, using (14) for O j−1, we have

Sk, j = BkG T
A j

−
j−1∑
l=1

Sk,lΠ
−1
l J T

l G T
A j

− Sk, j−1Π
−1
j−1 F j−1, j � k + 1.

Now, using (16) and that rk = ∑ j−1
l=1 JlΠ

−1
l J T

l , this expression can be rewritten as follows

Sk, j = (Bk − Akrk)G T
A j

−
j−1∑

l=k+1

Sk,lΠ
−1
l J T

l G T
A j

− Sk, j−1Π
−1
j−1 F j−1, j > k + 1,

Sk,k+1 = (Bk − Akrk)G T − Ak JkΠ
−1 Fk.
Ak+1 k
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This relation guarantees that1

Sk, j = (Bk − Akrk | −Ak Jk)�k, j, j � k + 1,

where �k, j = (�
(1)T
k, j | �(2)T

k, j )T is given by

�k, j =
⎛⎝ G T

A j
− ∑ j−1

l=k+1�
(1)

k,l Π
−1
l J T

l G T
A j

− �
(1)

k, j−1Π
−1
j−1 F j−1

−∑ j−1
l=k+1�

(2)

k,l Π
−1
l J T

l G T
A j

− �
(2)

k, j−1Π
−1
j−1 F j−1

⎞⎠ , j > k + 1;

�k,k+1 = (
G Ak+1 | FkΠ

−1
k

)T
.

Therefore, from (7), if we define

qk/L =
L∑

j=k+1

�k, jΠ
−1
j ν j, k < L; qL/L = 0,

and

Υk = (Bk − Akrk | −Ak Jk) (19)

the following expression for the smoother ẑk/L is immediately obtained

ẑk/L = ẑk/k + Υkqk/L, k < L.

Next, a backward recursive expression for qk/L will be derived. If we calculate the difference �k, j − �k+1, j , for j � k + 2,
and compare the expression obtained with the resulting one for �k+1, j , the following relation is deduced

�k, j =
(

IM − G T
Ak+1

Π−1
k+1 J T

k+1 −G T
Ak+1

−Π−1
k FkΠ

−1
k+1 J T

k+1 −Π−1
k Fk

)
�k+1, j, j � k + 2.

Using this relation, the following backward recursive formula for qk/L is easily obtained by separating the term correspond-
ing to j = k + 1 in the definition of qk/L

qk/L = Ξk+1

(
qk+1/L

Π−1
k+1νk+1

)
, k < L

with the matrix Ξk given by

Ξk =
(

IM − G T
Ak

Π−1
k J T

k −G T
Ak

G T
Ak

−Π−1
k−1 Fk−1Π

−1
k J T

k −Π−1
k−1 Fk−1 Π−1

k−1 Fk−1

)
. (20)

These results are summarized in the following recursive fixed-interval smoothing algorithm:

The fixed-interval smoothing estimators ẑk/L , for k < L, are calculated from

ẑk/L = ẑk/k + Υkqk/L, k < L, (21)

where, starting with qL/L = 0, the vectors qk/L are backward recursively obtained from

qk/L = Ξk+1

(
qk+1/L

Π−1
k+1νk+1

)
, k < L,

with Υk and Ξk given in (19) and (20), respectively. The filter ẑk/k, the matrices G Ak , Fk and Jk, the innovations νk and their covariance
matrices Πk are obtained from the linear filtering algorithm given in Section 3.

Finally, using expression (21) for the fixed-interval smoother, the following formula for the fixed-interval smoothing error
covariance matrices is deduced

Σk/L = Σk/k − Υk Q k/LΥ
T

k , k < L,

where Σk/k and Υk are given in (18) and (19), respectively. The matrices Q k/L = E[qk/LqT
k/L] satisfy the following recursive

relation

Q k/L = Ξk+1

(
Q k+1/L 0

0 Π−1
k+1

)
Ξ T

k+1, k < L; Q L/L = 0.

1 (U | V ) denotes a partitioned matrix into two sub-matrices U and V .
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(a) Filtering error variances versus p1 and p2 (b) Filtering error variances versus p1 (with p2 fixed)

(c) Filtering error variances versus p2 (with p1 fixed)

Fig. 1. Filtering error variances versus p1 and p2.

5. Example: scalar signal estimation

This section shows a numerical simulation example to illustrate the application of the recursive algorithms proposed
in the paper. To show the effectiveness of the proposed estimators, a program in MATLAB has been run, simulating at
each iteration the signal and the observed values and providing the filtering and smoothing estimates, as well as the
corresponding error covariance matrices.

Consider a zero-mean scalar signal {zk; k � 1} with autocovariance function given by

K z
k,s = 1.025641 × 0.95k−s, s � k,

which is factorizable according to hypothesis (I) taking

Ak = 1.025641 × 0.95k, Bk = 0.95−k.

For the simulation, the signal is supposed to be generated by the following first-order autoregressive model

zk+1 = 0.95zk + wk

where {wk; k � 1} is a zero-mean white Gaussian noise with Var[wk] = 0.1, for all k.
Consider two sensors whose real measurements, ỹi

k = zk + vi
k , i = 1,2, are perturbed by independent zero-mean white

Gaussian noises, {vi
k; k � 1}, with constant variances for all k, Var[v1

k ] = 0.5 and Var[v2
k ] = 0.9.

Now, according to the current model, assume that, at any time k > 1, the available measurement of the ith sensor, yi
k ,

may be delayed by one sampling period with different delay characteristics; specifically, we consider that

yi
k = (

1 − γ i
k

)̃
yi

k + γ i
k ỹi

k−1, k > 1; yi
1 = ỹi

1, i = 1,2,

where {γ i
k ; k � 1}, i = 1,2, are sequences of independent Bernoulli random variables with constant delay probabilities,

P [γ i
k = 1] = pi , ∀k > 1.
First, we study the filtering error variances, Σk/k , when the delay probabilities p1 and p2 are varied from 0 to 1. It must

be noted that such error variances stabilize around a constant value for k greater or equal to 10. For this reason, Fig. 1(a)
displays the filtering error variances Σ10/10 versus p1 and p2. Fig. 1(b), obtained by cutting the surface in Fig. 1(a) with the
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Fig. 2. Filtering error variances and fixed-point smoothing error variances, for the values p1 = 0.1, p2 = 0.3 and p1 = 0.6, p2 = 0.5.

Fig. 3. Filtering error variances and fixed-interval smoothing error variances, for the values p1 = 0.1, p2 = 0.3 and p1 = 0.6, p2 = 0.5.

planes p2 = 0, p2 = 0.1, . . . , p2 = 1, shows the filtering error variances versus p1. And Fig. 1(c) shows these variances versus
p2 (for constant values of p1). From this figure it is gathered that, as the probability that the observations of both sensors
are delayed increases, the filtering error variances become greater and, consequently, the performance of the estimators is
worse.

Next, to compare the effectiveness of the proposed filtering and smoothing estimators, one hundred iterations of the
respective algorithms have been performed, considering different values of the delay probabilities; on the one hand p1 = 0.1,
p2 = 0.3 and, on the other, p1 = 0.6, p2 = 0.5. For these values, the filtering and smoothing estimates (fixed-point and fixed-
interval), as well as the corresponding error variances, have been calculated.

Fig. 2 displays the filtering error variances, Σk/k , and the fixed-point smoothing error variances, Σk/k+2 and Σk/k+5. This
figure shows, on the one hand, that the error variances corresponding to the smoothers are less than the filtering ones and,
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Fig. 4. Simulated signal, zk , filtering estimates, ẑk/k , and fixed-point smoothing estimates, ẑk/k+3, for the values p1 = 0.1 and p2 = 0.3.

on the other, that as the delay probabilities of the sensors decreases, the error variances are smaller and consequently, the
performance of the estimators is better, according to what was observed in Fig. 1. From this figure, it is also deduced that
the accuracy of the smoother at each fixed-point k is better as the number of available observations increases.

For the same values of the delay probabilities, the fixed-interval smoothing error variances, Σk/100 are shown in Fig. 3
together with the filtering error variances, Σk/k . From this figure, similar considerations to those of Fig. 2 are inferred.

Finally, for the values p1 = 0.1 and p2 = 0.3, Fig. 4 shows a simulated signal together with the filtering estimates, ẑk/k ,
and fixed-point smoothing estimates, ẑk/k+3, while Fig. 5 shows a different simulated signal together with the filtering
estimates and the fixed-interval smoothing estimates, ẑk/100. Agreeing with the results obtained from Figs. 2 and 3, these
figures show that the smoothing estimates follow the signal evolution better than the filtering ones.

On the other hand, since in the theoretical study we have considered that the delay probabilities at each sensor are
time-variant, next we analyze, as an example, the filter performance when the delay probabilities at the first sensor are
time-dependent. Fig. 6 shows the filtering error variances and the delay probabilities in the observations coming from
the first sensor, p1

k (varying at each sampling time k), when p2
k , as in Figs. 2 and 3, takes the fixed values p2 = 0.3 and

p2 = 0.5, for all k. From this figure it is observed that, at each sampling time, the filtering error variance increases (respec-
tively, decreases)–and, consequently, worse (respectively, better) estimations are obtained–as the delay probability in the
observations coming from the first sensor is greater (respectively, smaller).

6. Concluding remark

In this paper, least-squares linear filtering and smoothing recursive algorithms are proposed to estimate signals from ran-
domly delayed observations coming from multiple sensors with different delay characteristics. This is a realistic assumption
in situations concerning sensor data that are transmitted over communication networks where, generally, multiple sensors
with different delay properties are involved.

The random delay in each sensor is modeled by a sequence of Bernoulli random variables, whose parameters repre-
sent the delay probabilities. Using an innovation approach, the estimation algorithms are derived without requiring the
knowledge of the signal state-space model, but only the covariance functions of the processes involved in the observation
equation, as well as the delay probabilities in each sensor. To measure the performance of the estimators, the filtering and
smoothing error covariance matrices are also calculated.

The generalization of the current model to a more general case of possibly longer δ sampling delay will require the
introduction, for i = 1, . . . ,m, and d = 0, . . . , δ, of sequences {γ (d)i

k ; k > d} of independent Bernoulli random variables with∑min{k−1,δ}
d=0 γ

(d)i
k = 1; so, the available measurements to estimate the signal can be described by

yi
k =

min(k−1,δ)∑
γ

(d)i
k ỹi

k−d, k � 1, i = 1, . . . ,m.
d=0
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Fig. 5. Simulated signal, zk , filtering estimates, ẑk/k , and fixed-interval smoothing estimates, ẑk/100, for the values p1 = 0.1 and p2 = 0.3.

Fig. 6. Filtering error variances for time-variant probabilities p1
k , when p2 = 0.3 and p2 = 0.5.

The linear least-squares estimators for the case of multiple sampling delays can be derived by following a similar framework
to that used in this paper.

To illustrate the theoretical results established in this paper, a simulation example is presented, in which the proposed
algorithms are applied to estimate a signal from randomly delayed observations coming from two sensors with different
delay characteristics.
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